

International Olympiad In Informatics 2009

August 8 – 15, Plovdiv, Bulgaria

Technical Info Sheet

 English 1.3

Page 1 of 2

TECHNICAL INFO SHEET

These pages contain helpful information on how to avoid slow input/output performance with
C++ streams (cin / cout), how to use 64-bit data types (variables) and how to properly
communicate with the grader on interactive tasks. They also include reference for what options
are given to the compilers and what stack limitations are in place.

Slow Input / Output with C++ Streams
When solving tasks with very large amounts of input / output data, you may notice that C++
programs using the cin and cout streams are much slower than equivalent programs that use the
scanf and printf functions for input and output processing. Thus, if you are using the cin / cout
streams we strongly recommend that you switch to using scanf / printf instead. However, if you
still want to use cin / cout, we recommend adding the following line at the beginning of your
program:

ios::sync_with_stdio(false);

and also making sure that you never use endl , but use “\n” instead.

Please note, however, that including ios::sync_with_stdio(false) breaks the
synchrony between cin / cout and scanf / printf, so if you are using this, you should never mix
usage of cin and scanf, nor mix cout and printf.

64-bit Data Types
For some tasks you may need to deal with numbers too large to fit in 32 bits. In these cases, you
would have to use a 64-bit integer data type, such as long long in C/C++ or int64 in
Pascal. Here is some sample code that illustrates the usage of these data types:

C/C++
int main(void) {
 long long varname;
 scanf(“%lld”, &varname);
 // Do something with the varname variable
 printf(“%lld\n”, varname);
 return 0;
}

Pascal
var
 varname: Int64;
begin
 read(varname);
 { Do something with the varname variable }
 writeln(varname);
end.

International Olympiad In Informatics 2009

August 8 – 15, Plovdiv, Bulgaria

Technical Info Sheet

 English 1.3

Page 2 of 2

Communication with Grader on Interactive Tasks
Whenever you solve an interactive task, you always need to flush the buffer of your output after
every new line printed on the output. Here is some code to illustrate how to do this under C, C++
and Pascal:

C or C++ with scanf / printf
fflush(stdout);

In addition, when using scanf, you must avoid reading input in a way that blocks the execution of
your program while waiting for white space on standard input. Such blocking might happen if you
use scanf with a first argument that ends with a space or a new line. In particular, you can
safely use “%d” as a scanf argument, but you should NOT use “%d “ (with a trailing
space) or “%d\n” (with a trailing new line).

C++ with cin / cout
cout << flush;

Pascal
flush(output);

Compiler Options
The following commands will be used to compile solutions of batch and interactive tasks (say the
task name is abc):

C
gcc –o abc abc.c –std=gnu99 –O2 –s –static –lm –x c

C++
g++ –o abc abc.cpp –O2 –s –static –lm –x c++

Pascal
fpc –O2 –XS –Sg abc.pas

Stack Limitations
Whenever your program is executed through the contest system, the stack size will only be
limited by the memory limit for the corresponding task.

