
The International Olympiad in Informatics Syllabus

1 Version and status information

This is the official Syllabus version for IOI 2009 in Plovdiv, Bulgaria.

The Syllabus is an official document related to the IOI. For each IOI,
an up-to-date version of the Syllabus is produced by the ISC, as described
in the IOI Regulations, Statue 3.13.

2 Authors and Contact Information

The original proposal of the IOI Syllabus was co-authored by Tom Verhoeff1,
Gyula Horváth2, Krzysztof Diks3, and Gordon Cormack4. Since 2007, the
maintainer of the Syllabus is Michal Forǐsek5.

You are welcome to send any feedback on the Syllabus to the current
maintainer’s e-mail address (forisek@dcs.fmph.uniba.sk).

For people interested in contributing to the quality of the Syllabus, some
additional background on the Syllabus and other miscellaneous information
can be found at http://ksp.sk/~misof/ioi-syllabus/.

3 Introduction

This Syllabus has two main purposes.
The first purpose is to provide a set of guidelines that help decide

whether a task is suitable for the International Olympiad in Informatics
1TU Eindhoven, The Netherlands, t.verhoeff@tue.nl
2University of Szeged, Hungary, horvath@inf.u-szeged.hu
3Warsaw University, Poland, diks@mimuw.edu.pl
4University of Waterloo, Canada, gvcormac@uwaterloo.ca
5Comenius University, Slovakia, forisek@dcs.fmph.uniba.sk

1

The IOI Syllabus – Version 1.2 2

(IOI). Based on this document, the International Scientific Committee (ISC)
evaluates the task proposals when selecting the competition tasks.

The second and closely related purpose is to help the organizers of
national olympiads prepare their students for the IOI.

The goal of this Syllabus is to give a classification of topics and concepts
from mathematics and computer science. The Syllabus specifies which of
these concepts are suitable to appear in the competition tasks and/or their
solutions.

Issues related to the usage of suitable terminology and notations in
competition tasks are beyond the scope of this document. (These issues are
discussed in [6].)

This Syllabus classifies each topic into one of three categories:

Included This is the default category. It means that the topic is relevant
for the IOI competition, that is, it could play a role in the description
of a competition task, in the contestant’s process of solving the task,
or in the model solution. Included topics are further qualified as:

♥ Unlimited The topic concerns prerequisite knowledge, and can ap-
pear in task descriptions without further clarification6.
Example: Integer in §4.1

4 To be clarified Contestants should know this topic, but when it
appears in a task description, the author must always clarify it
sufficiently.
Example: Directed graph in §4.2 DS2

	 Not for task description It will not appear in tasks descriptions,
but may be needed for developing solutions or understanding
model solutions.
Example: Asymptotic analysis of upper complexity bounds in
§5.2 AL1

Not needed This means that although the topic may be of interest, it will
not appear in task descriptions or model solutions, and that it will not
be needed to arrive at a solution. However, see also the note below
about possible promotion to Included.

Example: Binomial theorem in §4.2 DS4
6Danger of confusion (e.g. Fibonacci numbers) must always be avoided by further

clarification.

The IOI Syllabus – Version 1.2 3

Excluded This means that the topic falls outside the scope of the IOI
competition.

Example: Calculus in $4.3

The classifications under Not needed and Excluded are not intended to be
exhaustive, but rather serve as examples that map out the boundary. Topics
not mentioned in the Syllabus are to be treated as Excluded. However, topics
not classified for use in task descriptions, including topics not mentioned,
could be promoted to Included 4, provided that they require no special
knowledge and will be defined in terms of included non-	 concepts, in a
precise, concise, and clear way. Special cases of non-included topics can
be good candidates for such promotion. For example, planar graphs are
excluded, but trees (a special case) are in fact included.

Note that the Syllabus must not be interpreted to restrict in any way the
techniques that contestants are allowed to apply in solving the competition
tasks. Of course, each task or the Competition Rules can impose binding
restrictions, which are to be considered as part of the problem statement
(e.g. that no threads or auxiliary files are to be used).

Topics literally copied from [1] are typeset in sans serif font.

4 Mathematics

4.1 Arithmetics and Geometry

♥ Integers, operations (incl. exponentiation), comparison
♥ Properties of integers (positive, negative, even, odd, divisi-

ble, prime)
♥ Fractions, percentages
♥ Point, vector, Cartesian coordinates (on a 2D integer grid)
4 Euclidean distance, Pythagoras’ Theorem
♥ Line segment, intersection properties
4 Angle
♥ Triangle, rectangle, square, circle
♥ Polygon (vertex, side/edge, simple, convex, inside/outside,

area)

Excluded : Real and complex numbers, general conics (parabolas,
hyperbolas, ellipses), trigonometric functions

4.2 Discrete Structures (DS)

DS1. Functions, relations, and sets

The IOI Syllabus – Version 1.2 4

4 Functions (surjections, injections, inverses, composition)
4 Relations (reflexivity, symmetry, transitivity, equivalence relations, total/linear

order relations, lexicographic order)
♥ Sets (Venn diagrams, complements, Cartesian products, power sets)
4 Pigeonhole principle

Excluded : Cardinality and countability (of infinite sets)

DS2. Basic logic

♥ Propositional logic
♥ Logical connectives (incl. their basic properties)
♥ Truth tables
♥ Predicate logic
♥ Universal and existential quantification7

	 Modus ponens and modus tollens

N.B. This article is not concerned with notation. In past task de-
scriptions, logic has been expressed in natural language rather than
mathematical symbols, such as ∧, ∨, ∀, ∃.
Not needed : Validity, Normal forms

Excluded : Limitations of predicate logic

DS3. Proof techniques

4 Notions of implication, converse, inverse, contrapositive, negation, and

contradiction
	 Direct proofs, proofs by: counterexample, contraposition, contradiction
	 Mathematical induction
	 Strong induction (also known as complete induction)
♥ Recursive mathematical definitions (incl. mutually recursive defini-

tions)

Not needed : The structure of formal proofs

Excluded : Well orderings

DS4. Basics of counting
7In case the definition of a term in the problem statement contains more than one

quantifier (and especially if the quantifiers are of both types), it is advised to split the
definition into parts, each containing a single quantifier. E.g., don’t define the diameter
of a graph directly, use eccentricity of a vertex as an intermediate step.

The IOI Syllabus – Version 1.2 5

♥ Counting arguments (sums and product rule, inclusion-exclusion principle,

arithmetic and geometric progressions, Fibonacci numbers)
4 Pigeonhole principle (to obtain bounds)
4 Permutations and combinations (basic definitions)
4 Factorial function, binomial coefficient
	 Pascal’s identity, Binomial theorem

Excluded : Solving of recurrence relations

DS5. Graphs and trees

4 Trees (and their basic properties)
4 Undirected graphs (degree, path, cycle, connectedness, Euler/Hamilton

path/cycle, handshaking lemma)
4 Directed graphs (in-degree, out-degree, directed path/cycle, Eu-

ler/Hamilton path/cycle)
4 Spanning trees
4 Traversal strategies (defining the node order for ordered trees)
4 ‘Decorated’ graphs with edge/node labels, weights, colors
4 Multigraphs, graphs with self-loops

Not needed : Planar graphs, Bipartite graphs, Hypergraphs

DS6. Discrete probability Excluded

4.3 Other Areas in Mathematics

Not needed : Polynomials, Matrices and operations, Geometry in
3D space

Excluded : (Linear) Algebra, Calculus, Probability, Statistics

5 Computing Science

5.1 Programming Fundamentals (PF)

PF1. Fundamental programming constructs (for abstract machines)

♥ Basic syntax and semantics of a higher-level language (the specific lan-
guages available at an IOI will announced in the Competition
Rules for that IOI)

♥ Variables, types, expressions, and assignment
♥ Simple I/O

The IOI Syllabus – Version 1.2 6

♥ Conditional and iterative control structures
♥ Functions and parameter passing
	 Structured decomposition

PF2. Algorithms and problem-solving

	 Problem-solving strategies (understand–plan–do–check, separation
of concerns, generalization, specialization, case distinction, work-
ing backwards; see e.g. [5])

	 The role of algorithms in the problem-solving process
	 Implementation strategies for algorithms (also see §6 SE1)
	 Debugging strategies (also see §6 SE3)
4 The concept and properties of algorithms (correctness, efficiency)

PF3. Fundamental data structures

♥ Primitive types (boolean, signed/unsigned integer, character)
♥ Arrays (incl. multidimensional arrays)
♥ Records
♥ Strings and string processing
4 Static and stack allocation (elementary automatic memory manage-

ment)
4 Linked structures (linear and branching)
4 Static memory implementation strategies for linked structures
4 Implementation strategies for stacks and queues
4 Implementation strategies for graphs and trees
4 Strategies for choosing the right data structure
4 Abstract data types, priority queue, dynamic set, dynamic map

Not needed : Data representation in memory, Heap allocation, Runtime storage

management, Pointers and references8

Excluded : Floating-point numbers (see [3]), Implementation strategies for

hash tables

PF4. Recursion

♥ The concept of recursion
♥ Recursive mathematical functions
♥ Simple recursive procedures (incl. mutual recursion)
	 Divide-and-conquer strategies

8The inessential advantage of scalable memory efficiency is outweighed by the increased
complexity in reasoning. Static memory implementations should suffice to solve IOI tasks.

The IOI Syllabus – Version 1.2 7

	 Recursive backtracking

Not needed : Implementation of recursion

PF5. Event-driven programming

Not needed

However, competition tasks could involve a dialog with a reactive en-
vironment.

5.2 Algorithms and Complexity (AL)

We quote from [1]:

Algorithms are fundamental to computer science and software engineering.
The real-world performance of any software system depends only on two
things: (1) the algorithms chosen and (2) the suitability and efficiency of
the various layers of implementation. Good algorithm design is therefore
crucial for the performance of all software systems. Moreover, the study of
algorithms provides insight into the intrinsic nature of the problem as well
as possible solution techniques independent of programming language,
programming paradigm, computer hardware, or any other implementation
aspect.

AL1. Basic algorithmic analysis

4 Algorithm specification, precondition, postcondition, correctness,
invariants

	 Asymptotic analysis of upper complexity bounds (informally if possible)
	 Big O notation
	 Standard complexity classes (constant, logarithmic, linear, O(N log N),

quadratic, cubic, exponential)
	 Time and space tradeoffs in algorithms

Not needed : Identifying differences among best, average, and worst case be-

haviors, Little o, omega, and theta notation, Empirical measurements of perfor-

mance

Excluded : Asymptotic analysis of average complexity bounds, Using recurrence

relations to analyze recursive algorithms

AL2. Algorithmic strategies

	 Simple loop design strategies

The IOI Syllabus – Version 1.2 8

	 Brute-force algorithms (exhaustive search)
	 Greedy algorithms (insofar that understanding correctness is ele-

mentary)
	 Divide-and-conquer (insofar that understanding efficiency is elemen-

tary)
	 Backtracking (recursive and non-recursive)
	 Branch-and-bound (insofar that understanding correctness and ef-

ficiency are elementary)
	 Pattern matching and string/text algorithms (insofar that understand-

ing correctness and efficiency is elementary)
	 Dynamic programming9

	 Discrete approximation algorithms10

Excluded : Heuristics, Numerical approximation algorithms

AL3. Fundamental computing algorithms

	 Simple numerical algorithms involving integers (radix conversion, Eu-
clid’s algorithm, primality test by O(

√
N) trial division, Sieve of

Eratosthenes, factorization, efficient exponentiation)
	 Simple operations on arbitrary precision integers (addition, sub-

traction, simple multiplication)11

	 Simple array manipulation (filling, shifting, rotating, reversal, re-
sizing, minimum/maximum, prefix sums, histogram, bucket sort)

	 Sequential processing, sequential and binary search algorithms
	 Search by elimination, “slope” search
	 Quadratic sorting algorithms (selection, insertion)
	 Partitioning, order statistics by repeated partitioning, Quicksort
	 O(N log N) worst-case sorting algorithms (heap sort, merge sort)
	 Binary heap data structure12

	 Binary search trees
	 Fenwick trees13

9[1] puts this under AL8, but we believe it belongs here.
10The purpose of this item is to include tasks such as Xor from IOI 2002, where the

contestants have to devise an approximation algorithm, and achieve scores based on its
performance relative to other submissions. Textbook approximation algorithms are Ex-
cluded.

11The necessity to implement these operations should be obvious from the problem
statement.

12The more complex heap data structures, such as binomial and Fibonacci heaps, are
Excluded.

13Introduced in [2], also known as binary indexed trees. A 2D version of a Fenwick
tree was used in the IOI 2001 task Mobiles. This data structure is sometimes known as
a segment/interval tree, but this name shall be avoided to prevent confusion with data
structures that actually store segments or intervals.

The IOI Syllabus – Version 1.2 9

	 Representations of graphs (adjacency list, adjacency matrix)
	 Traversals of ordered trees
	 Depth- and breadth-first traversals of graphs, determining connected

components of an undirected graph
	 Shortest-path algorithms (Dijkstra, Bellman-Ford, Floyd-Warshall)
	 Transitive closure (Floyd’s algorithm)
	 Minimum spanning tree (Jarńık-Prim and Kruskal14 algorithms)
	 Topological sort
	 Algorithms to determine (existence of) an Euler path/cycle

Not needed : Hash tables (including collision-avoidance strategies)

Excluded : Simple numerical algorithms involving floating-point arithmetic,
Maximum flow algorithms, Bipartite matching algorithms, Strongly
connected components in directed graphs

AL4. Distributed algorithms

Excluded

AL5. Basic computability

Not needed : Finite-state machines, Context-free grammars (could be con-
sidered in the future)

Excluded : Tractable and intractable problems, Uncomputable functions, The

halting problem, Implications of uncomputability

AL6. The complexity classes P and NP

Excluded

AL7. Automata and grammars

Excluded

However, Finite automata, Regular expressions, and rewriting systems could
be considered in the future.

AL8. Advanced algorithmic analysis

	 Basics of Combinatorial game theory, Minimax algorithms for
optimal game playing

14In terms of a disjoint-set ADT

The IOI Syllabus – Version 1.2 10

Not needed : Online and offline algorithms, Combinatorial optimization

Excluded : Amortized analysis, Randomized algorithms, Alpha-beta pruning,
Sprague-Grundy theory

AL9. Cryptographic algorithms

Excluded

AL10. Geometric algorithms (on 2D grids, i.e. integer (x, y)-coordinates)

	 Line segments: properties, intersections
	 Point location w.r.t. simple polygon
	 Convex hull finding algorithms
	 Sweeping line method

AL11. Parallel algorithms

Excluded

5.3 Other Areas in Computing Science

The following areas are all Excluded.

AR. Architecture and Organization

Excluded

This area is about digital systems, assembly language, instruction
pipelining, cache memories, etc.The basic structure of a computer is
covered in §7.

OS. Operating Systems

Excluded

This area is about the design of operating systems, covering concur-
rency, scheduling, memory management, security, file systems, real-
time and embedded systems, fault tolerance, etc. The basics of using
the high-level services of an operating system are covered in §7, but
low-level system calls are specifically excluded.

NC. Net-Centric Computing

Excluded

The IOI Syllabus – Version 1.2 11

PL. Programming Languages

Excluded

This area is about analysis and design of programming languages, cov-
ering classification, virtual machines, translation, object-orientation,
functional programming, type systems, semantics, and language de-
sign. The basics of using a high-level programming language are
in §5.1.

HC. Human-Computer Interaction

Excluded

This area is about the design of user interfaces, etc. The basics of
using a (graphical) user interface are covered in §7.

GV. Graphics and Visual Computing

Excluded

IS. Intelligent Systems

Excluded

IM. Information Management

Excluded

SP. Social and Professional Issues

Excluded

CN. Computational Science

Excluded

6 Software Engineering (SE)

We quote from [1]:

Software engineering is the discipline concerned with the application of theory,
knowledge, and practice for effectively and efficiently building software systems
that satisfy the requirements of users and customers.

In the IOI competition, the application of software engineering concerns the
use of light-weight techniques for small, one-off, single-developer projects
under time pressure. All included topics are 	 .

The IOI Syllabus – Version 1.2 12

SE1. Software design

	 Fundamental design concepts and principles
	 Design patterns
	 Structured design

In particular, contestants may be expected to

– Transform an abstract algorithm into a concrete, effi-
cient program expressed in one of the allowed program-
ming languages, possibly using standard or competition-
specific libraries.

– Make their programs read data from and write data to
text files according to a prescribed simple format15

Not needed : Software architecture, Design for reuse

Excluded : Object-Oriented analysis and design, Component-level design

SE2. Using APIs

	 API (Application Programming Interface) programming

In particular, contestants may be expected to

– Use competition-specific libraries according to the pro-
vided specification.

Not needed : Programming by example, Debugging in the API environment

Excluded : Class browsers and related tools, Introduction to component-based

computing

SE3. Software tools and environments

	 Programming environments, incl. IDE (Integrated Development En-
vironment)

In particular, contestants may be expected to
15Evaluation of submitted programs will only be based on input data that agrees with

the prescribed input format. Submitted programs need not check input validity. However,
when contestants offer input data of their own design, then obviously no such guarantees
can be made.

The IOI Syllabus – Version 1.2 13

– Write and edit program texts using one of the provided
program editors.

– Compile and execute their own programs.
– Debug their own programs.

Not needed : Testing tools, Configuration management tools

Excluded : Requirements analysis and design modeling tools, Tool integration

mechanisms

SE4. Software processes

	 Software life-cycle and process models

In particular, contestants may be expected to

– Understand the various phases in the solution develop-
ment process and select appropriate approaches.

Excluded : Process assessment models, Software process metrics

SE5. Software requirements and specification

	 Functional and nonfunctional requirements

	 Basic concepts of formal specification techniques

In particular, contestants may be expected to

– Transform a precise natural-language description (with
or without mathematical formalism) into a problem in
terms of a computational model, including an under-
standing of the efficiency requirements.

Not needed : Prototyping

Excluded : Requirements elicitation, Requirements analysis modeling techniques

SE6. Software validation

	 Testing fundamentals, including test plan creation and test case generation
	 Black-box and white-box testing techniques
	 Unit, integration, validation, and system testing
	 Inspections

The IOI Syllabus – Version 1.2 14

In particular, contestants may be expected to

– Apply techniques that maximize the the opportunity
to detect common errors (e.g. through well-structured
code, code review, built-in tests, test execution).

– Test (parts of) their own programs.

Not needed : Validation planning

Excluded : Object-oriented testing

SE7. Software evolution

Not needed : Software maintenance, Characteristics of maintainable software,
Re-engineering, Legacy systems, Software reuse

SE8. Software project management

	 Project scheduling (especially time management)
	 Risk analysis
	 Software configuration management

In particular, contestants may be expected to

– Manage time spent on various activities.
– Weigh risks when choosing between alternative approaches.
– Keep track of various versions and their status while

developing solutions.

Not needed : Software quality assurance

Excluded : Team management, Software measurement and estimation tech-

niques, Project management tools

SE9. Component-based computing

Excluded

SE10. Formal methods

Formal methods concepts (notion of correctness proof, invariant)
Pre and post assertions

In particular, contestants may be expected to

– Reason about the correctness and efficiency of algo-
rithms and programs.

The IOI Syllabus – Version 1.2 15

Not needed : Formal verification

Excluded : Formal specification languages, Executable and non-executable spec-

ifications

SE11. Software reliability

Excluded

SE12. Specialized systems development

Excluded

7 Computer Literacy

The text of this section is 	 .

Contestants should know and understand the basic structure and oper-
ation of a computer (CPU, memory, I/O). They are expected to be able to
use a standard computer with graphical user interface, its operating system
with supporting applications, and the provided program development tools
for the purpose of solving the competition tasks. In particular, some skill
in file management is helpful (creating folders, copying and moving files).

Details of these facilities will be stated in the Competition Rules of the
particular IOI. Typically, some services are available through a standard
web browser. Possibly, some competition-specific tools are made available,
with separate documentation.

It is often the case that a number of equivalent tools are made available.
The contestants are not expected to know all the features of all these tools.
They can make their own choice based on what they find most appropriate.

Not needed : Calculator

Excluded : Word-processors, Spreadsheet applications, Data base
management systems, E-mail clients, Graphics tools (drawing,
painting)

References

[1] ACM/IEEE-CS Joint Curriculum Task Force. Computing Curricula
2001: Computer Science Volume. December 2001.
http://www.acm.org/sigcse/cc2001/

The IOI Syllabus – Version 1.2 16

[2] P. Fenwick. “A New Data Structure for Cumulative Frequency Tables”,
Software – Practice And Experience, 24(3):327–336 (1994).

[3] G. Horváth and T. Verhoeff. “Numerical Difficulties in Pre-University
Education and Competitions”, Informatics in Education, 2(1):21–38
(2003).

[4] IOI, International Olympiad in Informatics, Internet WWW-site.
http://www.IOInformatics.org/ (accessed February 2006).

[5] G. Polya. How to Solve It: A New Aspect of Mathematical Method.
Princeton Univ. Press, 1948.

[6] T. Verhoeff. Concepts, Terminology, and Notations for IOI Competition
Tasks, document presented at IOI 2004 in Athens, 12 Sep. 2004.
http://scienceolympiads.org/ioi/sc/documents/terminology.pdf

