
Using a Linux Security Module for 
contest security

Bruce Merry



Contents

● Goals
● Background
● Overview of techniques
● Our implementation
● Java
● Conclusions



The goals

 Resource limits
 No networking
 No IPC
 No access to 

evaluation system
 Single process
 Single thread

 Accurate constraints
 High throughput
 Minimum overhead
 Transparent



Device access in Linux

Application

C library

fprintf

Kernel

Process

FS driver

HDD driver

Kernelspace

write



System call wrappers

Application

C library

fprintf

Kernel

Process

FS driver

HDD driver

Kernel space

Process

Interceptor

write



System call wrappers

Pros

 Configurable, off-
the-shelf wrappers 
available

 Minimal startup 
overhead

Cons

 Context switch per 
system call

 Huge number of 
system calls

 Poor security track 
record



Virtualisation

Application

C library

fprintf

Kernel

Process

write

FS driver

HDD driver

Kernel space

VM process Host kernel

Kernel

FS driver

HDD driver

VM



Virtualisation

Pros

 Guest OS can be 
totally isolated

 Can start with a 
totally fresh OS for 
each run

Cons

 Performance impact
 Startup time
 Does not prevent 

multi-threading, 
external processes 
etc.



Linux Security Module

Application

C library

fprintf

Kernel

Process

FS driver

HDD driver

Kernel space
LSM

write



Linux Security Module

Pros

 Policy per operation, 
not per syscall

 No extra context 
switches

 Access to kernel 
internals

 Fewer races

Cons

 Kernel programming 
is difficult

 Interface changes 
frequently

 Outdated docs



LSM implementation: sandtray

 Launcher program requests restrictions:
− Calls setrlimit to set CPU, memory etc limits
− Writes to /proc/self/attr/exec to set 

further limits:
 version 1.0 (sets default restrictions)
 allow write problem.out

 Launcher then calls exec
− This triggers sandtray for this process

 Caller asks for exact CPU time on return
− setrlimit only has 1 second resolution



Filesystem access

 glibc accesses huge numbers of files
− A whitelist is difficult to maintain
− Path-based checks tricky due to links

 Instead, read access left open
− Contest internals owned by a different user

 Write access is tightly controlled
− Only the output file may be written
− Together with setrlimit, limits total disk space
− No symlinks, chmod, chown, etc.



Covert channels

 Sandtray cuts off
− Networking, SystemV IPC, kill etc.
− Writing files into /tmp or similar

 Are still channels through /proc and others
− Now prevented by serialising execution

 Cache timing theoretically possible
− Probably harder than solving the original 

problem



Java (Sun VM)

 Consumes huge amounts of virtual memory
 Does lots of suspicious-looking things
 Has its own security manager

− permission java.io.FilePermission …
 Has command-line option for max heap size:

− -Xmx 64m
 We use these instead of sandtray



Conclusions

 LSM
− Good abstraction of operations
− Low overhead
− Interface is a moving target

 Sun Java VM
− VM does not play nicely with LSM
− Internal security tools are good enough



Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

