
Using a Linux Security Module for 
contest security

Bruce Merry



Contents

● Goals
● Background
● Overview of techniques
● Our implementation
● Java
● Conclusions



The goals

 Resource limits
 No networking
 No IPC
 No access to 

evaluation system
 Single process
 Single thread

 Accurate constraints
 High throughput
 Minimum overhead
 Transparent



Device access in Linux

Application

C library

fprintf

Kernel

Process

FS driver

HDD driver

Kernelspace

write



System call wrappers

Application

C library

fprintf

Kernel

Process

FS driver

HDD driver

Kernel space

Process

Interceptor

write



System call wrappers

Pros

 Configurable, off-
the-shelf wrappers 
available

 Minimal startup 
overhead

Cons

 Context switch per 
system call

 Huge number of 
system calls

 Poor security track 
record



Virtualisation

Application

C library

fprintf

Kernel

Process

write

FS driver

HDD driver

Kernel space

VM process Host kernel

Kernel

FS driver

HDD driver

VM



Virtualisation

Pros

 Guest OS can be 
totally isolated

 Can start with a 
totally fresh OS for 
each run

Cons

 Performance impact
 Startup time
 Does not prevent 

multi-threading, 
external processes 
etc.



Linux Security Module

Application

C library

fprintf

Kernel

Process

FS driver

HDD driver

Kernel space
LSM

write



Linux Security Module

Pros

 Policy per operation, 
not per syscall

 No extra context 
switches

 Access to kernel 
internals

 Fewer races

Cons

 Kernel programming 
is difficult

 Interface changes 
frequently

 Outdated docs



LSM implementation: sandtray

 Launcher program requests restrictions:
− Calls setrlimit to set CPU, memory etc limits
− Writes to /proc/self/attr/exec to set 

further limits:
 version 1.0 (sets default restrictions)
 allow write problem.out

 Launcher then calls exec
− This triggers sandtray for this process

 Caller asks for exact CPU time on return
− setrlimit only has 1 second resolution



Filesystem access

 glibc accesses huge numbers of files
− A whitelist is difficult to maintain
− Path-based checks tricky due to links

 Instead, read access left open
− Contest internals owned by a different user

 Write access is tightly controlled
− Only the output file may be written
− Together with setrlimit, limits total disk space
− No symlinks, chmod, chown, etc.



Covert channels

 Sandtray cuts off
− Networking, SystemV IPC, kill etc.
− Writing files into /tmp or similar

 Are still channels through /proc and others
− Now prevented by serialising execution

 Cache timing theoretically possible
− Probably harder than solving the original 

problem



Java (Sun VM)

 Consumes huge amounts of virtual memory
 Does lots of suspicious-looking things
 Has its own security manager

− permission java.io.FilePermission …
 Has command-line option for max heap size:

− -Xmx 64m
 We use these instead of sandtray



Conclusions

 LSM
− Good abstraction of operations
− Low overhead
− Interface is a moving target

 Sun Java VM
− VM does not play nicely with LSM
− Internal security tools are good enough



Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

